
DECAY OF A VERTICAL TORNADO-LIKE VORTEX 
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The flow in tornado-like and hollow vortices was studied in Nikulin [i]. In the long- 
wave approximation, equations were obtained which are analogous to the equations of shallow 
water vortices [2]. For steady vertical tornado-like vortices, whose core fluid is lighter 
than the surrounding fluid, a sharp criterion was established dividing the cases where the 
solution is continued to a finite or infinite height. 

In this paper, as a supplement to Nikulin [I], the case is studied where the fluid in 
the core of the vortex is heavier than the surrounding fluid, and the direction of the force 
of gravity coincides with that of the vertical velocity. In addition, an analytic example 
is constructed in which the solution, bounded in height, being investigated in Nikulin [i] 
for a vortex with a light core is continuously distributed over the entire half-space. 

i. Statement of Problem. We examine a half-space filled with an inviscid incompres- 
sible fluid in a gravity field. The flow is assumed to be steady and rotationally symmetric. 
We introduce a cylindrical system of coordinates (r0z) (r is the radius, 8 the azimuthal 
angle, and z is the axis of symmetry, directed opposite the force of gravity). The boundary 
which separates the core of the vortex from the outer flow is denoted by r = r0(z); the 
outer flow is located in the region r > r0(z). The density of the fluid in the outer flow 
is assumed to be constant. At the core boundary, a jump in the density and in the component 
of the velocity tangential to the core is possible. Length, velocity, and density scales 
are introduced to transform to dimensionless quantities. For the unit length, the char- 
acteristic scale of change along the z axis is adopted; for unit velocity, the rotational 
component of the velocity at r = r0, z = 0; and for unit density, the density of the outer 
flow. In this case, the characteristic pressure and acceleration will be equal to unity. 
We denote by 6 the dimensionless r 0 at z = 0. Below, all quantities are given in dimension- 
less form unless it is specifically stated otherwise. 

The velocity components corresponding to (rOz) are written as (uvw); p is the pressure; 
Q the density; g the acceleration of gravity. The outer flow is assumed to be known and is 
prescribed in a form satisfying the equations of motion: 

u ~ w = O , v  = 6 / r , p  = - - 6 2 1 ( 2 r 2 )  - gz. 

The flow in the core is studied in the long-wave approximation along the z axis. 
out a scaling of the coordinates and functions: 

r~___~62q, z - + z ,  2ur--+62q,  v r - - ~ A ,  

w - - ~ w , p - - ~ f l ,  p - ~ - p ,  g - - ~ g .  

The boundary r0(z) goes over to ~0(z). After substitution, the equations of motion and con- 
tinuity take on the form 

(I.i) 

We carry 

OA w OA q~-~- + , -~;= o, 

qZ Oq t P A~ 062 { Oq 
T ~q ~ -- -- -- 2q op ~-~' (1.2) 

k ~ + u ' - U f  --  oz Pg, 

Oq ow Op ~z 

The boundary conditions at the axis of symmetry and the boundary of the core become: 

q = A  =o,  q=O;  (1.3) 

p = --i/(2%)-- gz, ~ ---- q0; (1.4) 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No~ 4, pp. 
42-47, July-August, 1992. Original article submitted May 14, 1991. 

0021-8944/92/3304-0515512.50 �9 1992 Plenum Publishing Corporation 515 



q = w(0n0/0 ), ] n = no. ( 1 . 5 )  

Condition (1.4) follows from (I.I) and the requirement of continuity of pressure:at the core 
boundary. Equation (1.5) is a kinematic condition. 

It is assumed that 6 ~ i. The terms in (1.2) which are proportional to 62 are neglected. 
The resultant system is transformed as in Nikulin [I]. New independent variables z', v, v~ 
[01] are introduced in accordance with the relations z = z', D = R(z', ~), where R satisfies 

and boundary conditions 

w(0R/0/)  = q ( 1 . 6 )  

R(z' ,  O) = O, R(z' ,  1) = qo, (1.7) 
R(0, v) is an arbitrary single-valued continuous function. Boundary conditions (1.3) (for q) 
and (1.5) are automatically satisfied for this definition of R. The unknown boundary q0(z) 
is changed into the known boundary v = I. In the variables z', v, the system (1.2) takes on 
the form (henceforth, the prime on z' is omitted) 

OA pA 2 OR 0p 
W-~z ~ 0 ,  2R 2 ~-v 0v '  

OR Ou, OR Op oR op OR 
P-~v W-Uf = av az -~ az a~ Pg Y#-v ' ( 1 . 8 )  

oq OR aw OR aw _ 0 ,  t v ~  = O. 
ox --7 @ Ov Oz Oz ~)v 

I t  f o l l o w s  f r o m  t h e  f i r s t  a n d  l a s t  e q u a t i o n  t h a t  A = A ( w ) ,  p = p ( v ) .  The  q u a n t i t y  p i s  
e l i m i n a t e d  f r o m  t h i s ,  a f t e r  i n t e g r a t i n g  t h e  s e c o n d  e q u a t i o n  i n  ( 1 . 8 )  a n d  u s i n g  ( 1 . 4 ) .  W i t h  
t h e  h e l p  o f  ( 1 . 6 ) ,  q . i s  e l i m i n a t e d .  As a r e s u l t ,  we o b t a i n  

1 
[ o {woR = o 9 w OWoz -- I--p1A~2R-] dRldz + ~'zO ,~ 2Rt d(pA2) O-fk 0~] " ( 1 . 9 )  
'v 

H e r e ,  R l ,  A1,  P l  a r e  t h e  v a l u e s  o f  R, A, a n d  p a t  v = 1 ( a t  t h e  c o r e  b o u n d a r y ) .  S y s t e m  ( 1 . 9 )  
is solved with initial data at z = 0. We set w = w0(v), R = v at z = 0. 

Nikulin [i] studied the case A = 0, p = const < i. In the present work, the results 
are generalized to q > i. 

THEOREM. Let A = 0, P = Pl = const, w0(~) be bounded and w0@ ) ~ y > 0, y constant, and 

1 

I I'd_v 

The cases p~ < 1 and Pl > 1 are considered separately. 

I. Let Pl < i. Then, if I < I, the solution exists for all z > 0, v~ [01], and R + 0, 
w + ~ monotonically for z + ~. If % > i, then the solution exists only for z~ s 

P' / - f "  ( 1 . 1 o )  

a n d  w = 0 ,  OR/3v -- ~ a t  z = s  v g i v e n  by  t h e  e q u a t i o n  w 0 ( v )  = u  

2 .  L e t  P l  > 1.  I n  a d d i t i o n ,  i t  i s  a s s u m e d  t h a t  (w 0 - y ) - 3 / 2  i s  n o t  i n t e g r a b l e  on  [ 0 1 ] .  
Then  f o r  a n y  X > 0 ,  t h e  s o l u t i o n  e x i s t s  o n l y  f o r  f i n i t e  z, z ~ h. F o r  z + h ,  t h e  d e r i v a t i v e  
aw/az  + ~ ,  aR/az  + - ~ ,  i f  x > 1; a n d  3w/Sz  + - ~ ,  8R/Dz + ~ ,  i f  i < 1. F o r  X > 1,  w g r o w s  
monotonically, while R dies out with increasing z. For k < i, w dies out monotonically while 

R grows with increasing z. 

Proof. The proof for Pl < 1 is given in Nilkulin [I]. Let us examine the case Pl > I. 

In (1.9) we set A = 0, p = Pl. The system is integrated from 0 to z. An expression 
for R is obtained by integrating the second equation over v. Denoting ~p ~ w"--w~, we obtain 

t 2 ( ]  - -  P l )  gz 1 R = [ w~ 

0 
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(R i is the value of R at ~ = i). From the first equation it follows that ~ :!y(z). From this, 
by studying the implicit relation ~(z), given by (i.ii), the dependence of the functions R and 

w on z can be determined. 

The left-hand side of the first equation in (i.ii) is denoted by ](~). Then 

/ '  (~) 

1 

] ' (9):1  i ~ wod" 
(i~12) 

The second term in /"(y) is estimated with the help of the Bunyakovskii inequality [i]. It 
is found that ~(~)>0 for finite ~--?~- Whence it follows that /'(~) is a monotonically 
growing function. From (1.12) and the additional assumption for Pl > i, it follows that 
/'(y)-+--ao for y_+_~2 and /,(9)_~i for ~-+oo. Thus, /'(~) has a single zero in the interval 
(_72, ~), which is attained when ~ = ~,, --?~<~.<co. It is obvious that the function f(~) 
has an absolute minimum at the point ~@; ~, is determined from the solution to the inte- 

gral equation /'(~,) = 0. 

From the definition of f comes 

-- g<0. (1.13) dz d~ dz Pl 

From t h i s  i t  f o l l o w s  t h a t  t h e  s i g n  o f  d~/dz i s  g i v e n  by t h e  s i g n  o f  / ' (~) ,  and in  v iew o f  t h e  
m o n o t o n i c i t y  o f  f ' (y ) ,  by t h e  s i g n  o f  f ' ( O ) .  S i n c e  T(O) = 0 ,  t h e n  f ' ( O )  = 1 - k, Le t  ~ < 1. 
Then f ' ( O )  > 0 and r d i e s  o f f  m o n o t o n i c a l l y  w i t h  g rowth  in  z f rom 0 t o  9, .  I n  t h i s  c a s e ,  
b e c a u s e  f ' ( O )  > 0 and t h e  m o n o t o n i c i t y  o f  /'(~) 9 , < 0 .  For  ~ - + Y , ,  z + h, where h i s  com- 
p u t e d  from ( 1 . 1 3 )  w i t h  y = ~,.  I t  i s  e a s y  t o  see  t h a t  h w i l l  be f i n i t e .  For  z > h, t h e  
s o l u t i o n  does no t  e x i s t ,  s i n c e  t he  r i g h t - h a n d  s i d e  o f  t h e  f i r s t  e q u a t i o n  in  ( 1 . 1 1 )  d i e s  o f f  
w i t h  growing  z,  w h i l e  t h e  l e f t - h a n d  s i d e  has  an a b s o l u t e  minimum a t  z = h (~ = ~ , ) .  I t  f o l -  
lows from ( 1 . 1 5 )  t h a t  dg/dz--+--oo f o r  z + h ( s i n c e  i n  t h i s  c a s e  Y - + Y , ) .  Then from ( 1 . ~ i )  
and the definition of ~ it follows that aw/~z-+--oo, ORlSz-~oo for z + h, the value of w dies 
off while R grows with increasing z from 0 to h. 

Let I > i. Reasoning as before, it can be shown that the solution also exists only for 
bounded z ~ h ,  for which 9 , > 0 ,  d~/dz-+oo, Ow/Oz--+oo, 0R/Oz-+--oo for z + h, w increases, while 
R dies off with increasing z from 0 to h. The theorem is proved. 

The obtained results are generalized when the direction of g and w coincide. The for- 
mulation of the theorem is unchanged, except that the cases Pl < 1 and Pl > 1 exchange places. 

2. Model of the Decay of a Vortex. An analytical example of a continuous continuation 
of the solution over the entire upper half-space is constructed for a flow whose parameters 
satisfy the conditions of the theorem and the inequalities Pl < i, I > i. In addition,~ it 
is assumed that w0(v) has a single minimum equal to y at the point v = 0, and the function 
(w ~ _ u is integrable at zero (~ = 0). 

According to the theorem, the solution will exist only for z ~ Z [s is determined from 
(i.i0)], in which case the vertical velocity w = 0 while 8R/By = ~ at the point z = Z, v = 0. 
From this it is possible to divide the continuation of the solution for the level z = s by 
the line R = 0 at the point z = s ~ = 0 in a plane containing the axis. 

Thus, it is assumed that the structure of the flow in a plane containing the axis has 
the form shown in Fig. i. At the boundary between regions I and III, p, (uvw), R and p are 
assumed to be continuous. At the boundaries between II and III, between III and the outer 
flow, the pressure is continuous and the kinematic condition is satisfied. From the contin- 
uity of thevelocity component, according to (1.6), and the definition of y, it follows that 
~R/~z and Y are continuous at the boundary z = s 

It is assumed that the region II is filled with a fluid at rest with constant density 
P2. In region III, the flow will be described by the first equation of system (i.ii) and, in 
place of the second equation, by 

I 

WodV 
n :  (2 .1)  
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Z 

Fig. 1 

due to the change in conditions on R at v = 0. This equation is also valid in I. Because 
of the condition on p at z = ~, the density in region III will be equal to Pl. The function ~ (z)i by construction is assumed to be continuous at z = ~. Then from (2.1) it follows that 
he function R(v, z) is continuous in z for all v. Because of the second equation in (1.8) 

and the condition A = 0, the pressure in regions II and III is the same for equal z, and 
according to (1.4), is written as 

p = - - t / 2 R ,  - - g z .  ( 2 . 2 )  

This  e n s u r e s  t h e  c o n t i n u i t y  o f  t h e  p r e s s u r e  a t  t h e  b o u n d a r i e s .  On t h e  o t h e r  hand,  f rom t h e  
e q u a t i o n  o f  h y d r o s t a t i c s ,  i t  f o l l o w s  t h a t  p = - p 2 g z  + c o n s t  in  r e g i o n  I I .  From t h i s ,  and 
from ( 2 . 2 )  we d e t e r m i n e  Rz: 

i /B,  = l l B , o  --  2(i - -  p , ) g ( a -  1). ( 2 . 3 )  

Here Rio ( t h e  v a l u e  o f  R z a t  z = ~) i s  e x p r e s s e d  a c c o r d i n g  t o  ( 1 . 1 1 )  w i t h  ~ = _u [ 1 ] .  Sub- 
s t i t u t i o n  of (2.3) into the first equation in (i.ii) gives a value of ~ in region III, and 
into (2.1) gives the value of R. 

The requirement that aR/Sz be continuous at z = ~ imposes limitations on P2. As has 
been proved, we have from (1.13) that d~/dz = 0 in region I for z = ~. From this it follows 
that dR/dz = dRi/dz:in I for Z = ~. Thequantity dRl/dz is determined using (1.11)-(1.13), 
considering that J~ = _u at z = ~ [I]. Then dR1/dz = 2(1 - pl)gR~. In region III, dR/dz 
is computed from (2.1) with accout taken of (2.3) and the first equation in (i.ii). It is 
found that dR/dz is the same as in region I ifjP2 = Pl. 

Thus, the conditions at the region boundaries, and Eqs. (i.ii) and (2.1) are satisfied. 
Region II is filled with a fluid at rest with density Pl. The outer boundary R I of region III 
is determined according to (2.3) with P2 = Pl. The value of ~ in III is constant and equal 
to _u The boundary between regions II and III is determined according to (2.1) for ~ ~--72. 
From this and from (2.3) it follows that the height in region III is bounded by the quantity 

hl = t/[2R10(t -- Pl)g]. 

Then, t a k i n g  ( 1 . 1 0 )  and t h e  e x p r e s s i o n  f o r  R10 i n t o  a c c o u n t ,  we w r i t e  t h e  t o t a l  h e i g h t  of  t h e  
a s c e n t  o f  t h e  f l u i d  as  

H = l + A l =  2(i ~ ? l ) g  _ ~ 2  

Note that H depends only on the minimum value of w 0, equal to u but does not depend on the 
distribution of w0(v). Using the fact that in this case, ~ > i, it is easy to obtain y2 < 
i/(2pl). From this we have a bound on H: 

l / [ 4 ( 1  - -  p~)g] < H < i / [ 2 ( i  - -  p~)g].  

These inequalities make it possible to estimate H to order of magnitude without knowing w 0. 
For dimensional quantities, this estimate has the form 

H ~ PoV~/[2g (P0 - -  P~)] ( 2 . 4 )  

(v 0 i s  t h e  r o t a t i o n a l  component  o f  t h e  v e l o c i t y  a t  t h e  b o u n d a r y  o f  t h e  c o r e  a t  z = 0, and P0 
i s  t h e  d e n s i t y  o f  t h e  f l u i d  in  t h e  o u t e r  r e g i o n ) .  

3. D i s c u s s i o n  of  R e s u l t s ,  and Compar ison w i t h  O b s e r v a t i o n s .  I n  t h e  c a s e  PI > 1, X > 1 
( i n  a c c o r d a n c e  w i t h  p o i n t  2 o f  t h e  t h e o r e m ) ,  t h e  v e r t i c a l  v e l o c i t y  w and t h e  r o t a t i o n a l  com- 
p o n e n t  of  t h e  v e l o c i t y  a t  t h e  c o r e  b o u n d a r y  v ( s i n c e  v = I~R 7)  grow w i t h  i n c r e a s i n g  z.  Th i s  
p e r h a p s  e x p l a i n s  t h e  e n g u l f i n g  o f  f l u i d  by t h e  w h i r l w i n d  [ 3 ] ,  and a l s o  i s  one o f  t h e  mecha-  
n isms  of  i n t e n s i f y i n g  t h e  r o t a t i o n  o f  t h e  w h i r l w i n d  c o r e .  Note t h a t  f o r  Pl > 1, t h e  s o l u t i o n  
c e a s e s  t o  e x i s t ,  b e c a u s e  t h e  d e r i v a t i v e s  o f  t h e  unknown f u n c t i o n s  t e n d  t oward  i n f i n i t y .  Th i s  
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property is analogous to the "gradient catastrophe" in gasdynamics, which leads to the forma- 
tion of shock waves. A detailed analogy suggests that at the height where the smooth solu- 
tion ceases to exist, there is a sharp change in the core of the vortex, with a transition 

to a new solution with other parameters. 

The stnucture of the flow for Pl < I, I > i, shown in Fig. 1 is of interest. From ex- 
periments with vortices obtained during heating of an underlying surface [4, 5], and observa- 
tions of dust devils [6, 7], it is known that the core of the vortex, which is usually made 
visible by fine particles, sharply drops in visibility at some height and disappears at the 
point where the structure of the flow changes [4, 5]. The sudden disappearance of the visible 
core can be explained by the fact that during the spreading out of the fluid in region III, 
its thickness decreases, and therefore, it rapidly mixes with the surrounding medium and be- 
comes invisible. Such a flow pattern can model the fundamental features of the process of 
vortex decay. 

Using (2.4), it is possible to obtain quantitative estimates and compare these with ob- 
servations. The. height at which a sharp change in the structure of the flow occurs is taken 
as the height of the vortex in experiments [4, 5]. In the calculations, it is convenient to 
express the difference in densities by the difference in temperatures. For P0 - Pl ~ P0, we 
have (90 - Pl)/P0 ~ (TI - T0)/T0 (Tl is the average temperature in the core, and T 0 is the 
temperature of the surrounding medium). Then 

H ~ v~To/[2g (T~ --To)l. (3.1) 
h similar expression for the height of the vortex was obtained in Nikulin [1] for the par- 
ticular case when w 0 =const and does not depend on ~. In the present work, it has been 
shown that this estimate is valid for any w0(~) satisfying the condition I > 1 when consider- 
ing the height of ascension of the fluid in region III. Comparison of (3.1) with experiment 
[4, 5] and observations of dust devils [6-8] was done in Nikulin [i]. It was shown that to an 
order of magnitude, calculations agree with laboratory measurements and observations of dust 
devils. 

Thus within the proposed theoretical model, the flow in the core of a steady tornado= 
like vortex has been studied, with account taken of the variability of vertical component 
of the velocity in a horizontal cross section of the core. As a result of this, the pos- 
sibility has been established of continuing the continuous solution to infinity or to some 
bounded height, for which the radius of the core remains finite. The solutions which cannot 
be continued have been classified: the solution ceases to exist either due to the vanishing 
of the vertical velocity, or due to the increase without bounds of the derivatives. In the 
first case, it is possible to draw an analogy with the flow in a boundary layer. The pos:i- 
tion of the stagnation point in a boundary layer is related to the start of its separation; 
in the core of the vortex, to the start of its decay. In the second case, one can draw an 
analogy with gasdynamics: the breakdown of the solution from the mathematical point of view 
takes place for identical reasons. A description of the space evolution of the vortex core 
has been given, and a flow pattern proposed in the region of its decay. A quantitative esti- 
mate of the height of a tornado-like vortex, as the point of its decay, has been obtained. 

The author thanks V. M. Teshukov for helpful discussions of the problems examined here~ 
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